numpy.ma.masked_values#
- ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source]#
- Mask using floating point equality. - Return a MaskedArray, masked where the data in array x are approximately equal to value, determined using - isclose. The default tolerances for- masked_valuesare the same as those for- isclose.- For integer types, exact equality is used, in the same way as - masked_equal.- The fill_value is set to value and the mask is set to - nomaskif possible.- Parameters:
- xarray_like
- Array to mask. 
- valuefloat
- Masking value. 
- rtol, atolfloat, optional
- Tolerance parameters passed on to - isclose
- copybool, optional
- Whether to return a copy of x. 
- shrinkbool, optional
- Whether to collapse a mask full of False to - nomask.
 
- Returns:
- resultMaskedArray
- The result of masking x where approximately equal to value. 
 
 - See also - masked_where
- Mask where a condition is met. 
- masked_equal
- Mask where equal to a given value (integers). 
 - Examples - >>> import numpy as np >>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data=[1.0, --, 2.0, --, 3.0], mask=[False, True, False, True, False], fill_value=1.1) - Note that mask is set to - nomaskif possible.- >>> ma.masked_values(x, 2.1) masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], mask=False, fill_value=2.1) - Unlike - masked_equal,- masked_valuescan perform approximate equalities.- >>> ma.masked_values(x, 2.1, atol=1e-1) masked_array(data=[1.0, 1.1, --, 1.1, 3.0], mask=[False, False, True, False, False], fill_value=2.1)