numpy.ma.array#
- ma.array(data, dtype=None, copy=False, order=None, mask=np.False_, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)[source]#
- An array class with possibly masked values. - Masked values of True exclude the corresponding element from any computation. - Construction: - x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, shrink=True, order=None) - Parameters:
- dataarray_like
- Input data. 
- masksequence, optional
- Mask. Must be convertible to an array of booleans with the same shape as data. True indicates a masked (i.e. invalid) data. 
- dtypedtype, optional
- Data type of the output. If - dtypeis None, the type of the data argument (- data.dtype) is used. If- dtypeis not None and different from- data.dtype, a copy is performed.
- copybool, optional
- Whether to copy the input data (True), or to use a reference instead. Default is False. 
- subokbool, optional
- Whether to return a subclass of - MaskedArrayif possible (True) or a plain- MaskedArray. Default is True.
- ndminint, optional
- Minimum number of dimensions. Default is 0. 
- fill_valuescalar, optional
- Value used to fill in the masked values when necessary. If None, a default based on the data-type is used. 
- keep_maskbool, optional
- Whether to combine mask with the mask of the input data, if any (True), or to use only mask for the output (False). Default is True. 
- hard_maskbool, optional
- Whether to use a hard mask or not. With a hard mask, masked values cannot be unmasked. Default is False. 
- shrinkbool, optional
- Whether to force compression of an empty mask. Default is True. 
- order{‘C’, ‘F’, ‘A’}, optional
- Specify the order of the array. If order is ‘C’, then the array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’ (default), then the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous), unless a copy is required, in which case it will be C-contiguous. 
 
 - Examples - >>> import numpy as np - The - maskcan be initialized with an array of boolean values with the same shape as- data.- >>> data = np.arange(6).reshape((2, 3)) >>> np.ma.MaskedArray(data, mask=[[False, True, False], ... [False, False, True]]) masked_array( data=[[0, --, 2], [3, 4, --]], mask=[[False, True, False], [False, False, True]], fill_value=999999) - Alternatively, the - maskcan be initialized to homogeneous boolean array with the same shape as- databy passing in a scalar boolean value:- >>> np.ma.MaskedArray(data, mask=False) masked_array( data=[[0, 1, 2], [3, 4, 5]], mask=[[False, False, False], [False, False, False]], fill_value=999999) - >>> np.ma.MaskedArray(data, mask=True) masked_array( data=[[--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True]], fill_value=999999, dtype=int64) - Note - The recommended practice for initializing - maskwith a scalar boolean value is to use- True/- Falserather than- np.True_/- np.False_. The reason is- nomaskis represented internally as- np.False_.- >>> np.False_ is np.ma.nomask True